こんにちは大阪京橋数学塾A4Uの六人部です。
今回は開明中学入試過去問を扱っていきます。
規則性に関する問題です。
2020年度1次前期大問4
問題
$$\begin{eqnarray}&&\rm3の倍数と5の倍数を並べた数の列があります。\\[5mm]&&\rm3,5,6,9,10,12,15,18,20,21\cdots\\[5mm]&&\rmこのとき次の問いに答えなさい。\\[10mm]&&\rm(1)\ 30は、はじめから数えて何番目の数ですか。\\[5mm]&&\rm(2)\ はじめから数えて21番目の数は何ですか。\\[5mm]&&\rm(3)\ はじめから数えて500番目の数は何ですか。\\[5mm]&&\rm(4)\ 2020は、はじめから数えて何番目の数ですか。\end{eqnarray}$$
解説とポイント
解説
$$\begin{eqnarray}&&\rm(1)\ 30は、はじめから数えて何番目の数ですか。\\[5mm]&&\rm3と5の最小公倍数は15なので、\\[5mm]&&\rm15までのパターンの繰り返しと考えることが出来ます。\\[5mm]&&\rm15は7番目の数であるから、\\[5mm]&&\rm30\div15=2より30は14番目の数となる\\[15mm]&&\rm(2)\ はじめから数えて21番目の数は何ですか。\\[5mm]&&\rm15までの7個の数をワンセットで考えると\\[5mm]&&\rm21\div7=3より21番目の数は、\\[5mm]&&\rm15\times3=45となる。\\[15mm]&&\rm(3)\ はじめから数えて500番目の数は何ですか。\\[5mm]&&\rm(2)と同様に考えて、\\[5mm]&&\rm500\div7=71余り3より\\[5mm]&&\rm15\times71+(3,5,6,9,10,12,15の3番目の数)=1065+6=1071\\[15mm]&&\rm(4)\ 2020は、はじめから数えて何番目の数ですか。\\[5mm]&&\rm(2)(3)の考え方を逆に使う。\\[5mm]&&\rm2020\div15=134余り10となるので\\[5mm]&&\rm7個の数が134セット取れて10は5番目の数であるから、\\[5mm]&&\rm134\times7+5=943となる。\\[5mm]&&\rmよって2020は943番目の数。\end{eqnarray}$$
まとめ
2020年度開明中過去問をお届けしました。
新型コロナで今年度の入試はどうなるのか心配ではありますが、すべき事を粛々とこなすのみです。
受験勉強にお困りの方は何でも気軽にご相談ください。